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Abstract

One of the major sources of ground-borne vibration is the running of trains in underground railway tunnels. Vibration is

generated at the wheel–rail interface, from where it propagates through the tunnel and surrounding soil into nearby

buildings. An understanding of the dynamic interfaces between track, tunnel and soil is essential before engineering

solutions to the vibration problem can be found. A new method has been developed to evaluate the effectiveness of

vibration countermeasures. The method is based on calculating the mean power flow from the tunnel, paying attention to

that part of the power which radiates upwards to places where buildings’ foundations are expected to be found. The mean

power is calculated for an infinite train moving through the tunnel with a constant velocity. An elegant mathematical

expression for the mean power flow is derived, which can be used with any underground-tunnel model. To evaluate the

effect of vibration countermeasures and track properties on power flow, a comprehensive three-dimensional analytical

model is used. It consists of Euler–Bernoulli beams to account for the rails and the track slab. These are coupled in the

wavenumber–frequency domain to a thin shell representing the tunnel embedded within an infinite continuum, with a

cylindrical cavity representing the surrounding soil.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Underground railways are important for solving traffic congestion in densely populated cities. A serious
disadvantage is the vibration generated by trains, which propagates from the wheel–rail interface through the
tunnel and surrounding soil into nearby buildings. The resulting vibration and re-radiated noise causes
annoyance to occupants particularly in the frequency range 0–200Hz. Vibration at higher frequencies is
generally attenuated rapidly with distance along the transmission path through the ground [1]. Many methods
are used to decrease vibration levels in nearby structures [2,3]. One of the most effective methods is to isolate
vibration at the source. A good example of source isolation is the use of floating-slab track as illustrated in
Fig. 1. The principal components relevant to vibration modelling are the rails, the railpads and the floating
slab. The floating slab is coupled via slab bearings to the tunnel wall which lines a cavity in the soil.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Fig. 1. Layout of an underground tunnel showing the different structural components (in this figure the floating slab is mounted on three

lines of discrete slab bearings).
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Existing models of underground railways use the displacement, velocity or acceleration power spectral
density (PSD) calculated at some points in the track, tunnel or the ground as measures of vibration, see Ref.
[4] for example. The PSD should be calculated in different directions and at many points to show the vibration
environment at and away from the tunnel.

In this paper, a different measure of vibration is used to evaluate the effect of vibration countermeasures.
This measure is based on the mean power flow from the tunnel, paying particular attention to the part of the
power which radiates upwards to places where buildings’ foundations are located. This measure has many
advantages over the conventional approach, for instance:
�
 it provides a single measure of the vibration by calculating the power radiated upwards (the PSD at a single
point is not representative for all places around the tunnel);

�
 it accounts for vibration in the vertical, horizontal and longitudinal directions at once (the PSD must be
computed for each direction separately);

�
 the power-flow measure accounts for both the velocity and stress states around the tunnel.
The power-flow results, as will be seen later, depend on the transfer function between the rail input and the soil
output. Therefore, the method can be applied to any model of surface or underground railways by using the
appropriate transfer functions. In this paper, a model of a track in a deep-bored tunnel is used to investigate
the power radiation, where no account is taken for any reflections. A detailed description of the method is
given in Section 2. Sections 3 and 4 discuss the tunnel–soil model and the track model, respectively. Section 5
discusses the calculation procedure and finally, by means of a parametric survey, Section 6 provides some
insight into the behaviour of the model and the effect of track properties on mean power flow.
2. Mean power flow due to an infinite moving train

A set of moving axles, infinite in number and with fixed axle spacing L, is used to model a train moving in an
underground tunnel. As will be seen later in Section 2.3, the importance of the infinite-train model is that it
causes the mean power flow to be independent of the longitudinal coordinates (in the tunnel direction) and
hence reduces the three-dimensional problem to a two-dimensional one. The train model is shown in Fig. 2,
where only unsprung masses are considered to give rise to dynamic forces on the track. The train moves with
velocity v and due to a given sinusoidal rail roughness of wavelength l0, the rail experiences a harmonic
excitation with angular frequency $ ¼ 2pf̄ ¼ 2pv=l0.

In this paper, correlated roughness on the two rails is assumed. Thus, the beam in Fig. 2 represents both
rails of the track. The derivation in this section has been extended to uncorrelated roughness and is soon to be
published [5]. This section is divided into three parts: firstly, an expression is found for the displacement at any
point in the track or soil; secondly, the velocity and stress expressions are calculated; finally, these expressions
are used to calculate the mean power flow.
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Fig. 2. Infinite number of masses move over a rail with roughness of wavelength l0 and magnitude D0. Rail displacements are not shown.
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Fig. 3. Loading on the rail equivalent to the one in Fig. 2. Fk ¼ Gei$teik$L=v.
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2.1. Displacements calculation of the track– tunnel– soil system

The loading in Fig. 2 is dynamically equivalent to a set of oscillating moving loads in the form Fk ¼

Gei$teik$L=v as shown in Fig. 3. G is the magnitude of the applied force (constant for all axles), the phase
difference between any adjacent loads is $L=v, and the index k varies from �1 to 1 . The load on the rail
can be written in a continuous form as

F ðx; tÞ ¼
X1

k¼�1

Gei$teik$L=vdðx� vt� kLÞ. (1)

This force is transformed to the wavenumber–frequency domain x–o using the double Fourier transform in
time and space [6] to give

~F ðx;oÞ ¼ 2p
X1

k¼�1

GeixnLeik$L=vdðoþ xv�$Þ. (2)

The displacement of the track or soil due to this loading is calculated using the convolution integral [6] as a
multiplication in the x–o domain. Hence,

~Y ðx;oÞ ¼ 2p ~Hðx;oÞ
X1

k¼�1

GeixkLeik$L=v dðoþ xv�$Þ, (3)

where ~Hðx;oÞ is the displacement frequency response function (FRF), i.e. the displacement of the measuring
point (at track or soil) in the wavenumber–frequency domain for a unit force at the rail in the same domain.
Transforming back to the time domain gives

~Y ðx; tÞ ¼ ~Hðx;$� xvÞGeið$�xvÞt
X1

k¼�1

eikLð$=v�xÞ. (4)

The infinite sum of exponential functions can be written as an equivalent sum of delta functions [6] to give

~Y ðx; tÞ ¼ ~Hðx;$� xvÞGeið$�xvÞt 2p
L

X1
k¼�1

d x�$=vþ
2pk

L

� �
, (5)

where k no longer gives the load index. Transforming back to the space domain and rearranging gives

yðx; tÞ ¼
X1

k¼�1

eixkxeiokt G ~Hðxk;okÞ

L

� �
(6)

where

xk ¼
$

v
�

2pk

L
and ok ¼

2pkv

L
.
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This important result gives the displacement at any point in the track–soil system. It expresses the
displacement as a sum of infinite convecting waves. Each wave is described with its angular frequency ok and
wavenumber xk, which is called the wavenumber deficit.

2.2. Velocity and stress calculations of the track– tunnel– soil system

Before writing the velocity and stress expressions, the magnitude of the force amplitude G in Eq. (6) is
calculated by comparing the loading in Figs. 2 and 3 and writing the equilibrium of the mass located at x ¼ 0
at time t ¼ 0. This results in

G ¼
MD0$

2

1� yð0; 0ÞG¼1M$2
, (7)

where yð0; 0ÞG¼1 is calculated from Eq. (6) by using the FRF of the rail ~Hðx;oÞ and substituting G ¼ 1, M is
the unsprung mass and D0 is the roughness amplitude.

One can now calculate the velocity and stress at a point in soil by substituting the velocity and stress FRFs
( ~V ðxk;okÞ and ~tðxk;okÞ) for the displacement FRF ~Hðx;oÞ in Eq. (6) to give

V ðx; tÞ ¼
X1

k¼�1

eixkxeiokt G ~V ðxk;okÞ

L

� �
, (8)

tðx; tÞ ¼
X1

k¼�1

eixkxeiokt G~tðxk;okÞ

L

� �
. (9)

2.3. Mean power flow calculation

Instantaneous local power flow is the product of local velocity and local stress. This forms the basis of the
mean power flow method. The mean power flow can be calculated as

PðxÞ ¼
v

L

Z t¼L=v

t¼0

ReðV ðx; tÞÞReðtðx; tÞÞdt. (10)

Substituting Eqs. (8) and (9) into Eq. (10) after simplifications results in

PðxÞ ¼
jGj2

2L2

X1
k¼�1

Re½ ~V ðxk;okÞ~t�ðxk;okÞ�, (11)

where ðÞ� denotes the conjugate of the complex quantity. The significance of this result is that it is independent
of the longitudinal coordinate x. This confines the problem to the two-dimensional plane perpendicular to the
longitudinal direction.

The infinite sum in Eq. (11) can be approximated as a finite sum performed over the region with large FRF
response. This is made clear in Fig. 4, where the significant values of wavenumber deficit xk are those that map
onto regions of high ~V ðx;oÞ and ~tðxk;okÞ.

3. Tunnel and soil model

A three-dimensional model for an underground tunnel and the surrounding soil is introduced by Forrest [7].
The tunnel wall is modelled as a thin cylindrical shell, while the soil around the tunnel is modelled using the
elastic continuum theory as an infinite domain containing a cylindrical cavity as shown in Fig. 5.

The time-varying distributed stress applied to the tunnel wall is denoted tðx; y; tÞ, where x is the distance
measured along the tunnel and y is the angle measured around the circumference. This stress is transformed to
the wavenumber domain using the Fourier transform along the direction x and due to circular periodicity, the
y dimension is decomposed into a discrete Fourier series with symmetrical and anti-symmetrical components
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Fig. 5. Tunnel wall and soil models: (a) tunnel wall of outer radius r1 modelled as a thin cylindrical shell of infinite length. (b) Surrounding

soil modelled as an infinite domain with cylindrical cavity.
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Fig. 4. Demonstration of the wavenumber region used in calculating Eq. (11). See Eq. (6) for the relationship between xk and ok.
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at the tunnel wall. The form of loading with symmetrical components with respect to y can be written as

tðx; y; tÞ ¼

~trx cos ny

~try sin ny

~trr cos ny

2
64

3
75

r¼rt

eiðotþxxÞ, (12)

where rt is the internal radius of the tunnel. Note in Eq. (12) that ~try sin ny is symmetrical rather than anti-
symmetrical due to the sign convention for stress components as shown in Fig. 5. The soil velocities at radius
r0 measured from the tunnel centre, for the stress in Eq. (12), can be written as

V ðx; y; tÞ ¼

~V x cos ny
~Vy sin ny
~V r cos ny

2
64

3
75

r¼r0

eiðotþxxÞ. (13)

To account for anti-symmetrical components (for instance, when torsional loading of the slab is considered),
Eqs. (12) and (13) are used again, but every cos ny should be changed to sin ny and vice versa. When coupling a
track to this model, the circumferential distribution of forces on the tunnel wall depends on the connectivity of
the track. The model response to symmetrical and anti-symmetrical components can be found and the total
response is calculated by adding the individual responses from Eq. (13). More details about the model are
found in Refs. [5,7].

4. The track model

The track model consists of two rails and a main track slab modelled as Euler–Bernoulli beams [8]. The
frequency range of interest of ground-borne vibration extends up to 200Hz. This justifies using the
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Fig. 6. Coupling of the slab to the tunnel–soil model via: (a) two lines, (b) three lines, and (c) uniform continuous support. Rails are not

shown.
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Euler–Bernoulli model, as the wavelengths of the propagating waves are much longer than the cross-sectional
dimensions of the rails and slab. Rails transmit the load to the slab through railpads. Railpads are modelled as
continuous resilient layers under the rails. The track is supported on the tunnel wall via slab bearings. Only
bending of the slab is considered. The inclusion of torsional effects is straightforward [5], but not presented
here. Three types of slab supports are considered, as shown in Fig. 6. The slab bearings in these models are
continuous in the longitudinal direction and have both normal and shear stiffness. In reality, a floating slab is
mounted on a thick layer of concrete in the base of the tunnel. Such a layer can be modelled as an extra ‘‘direct
fastening’’ slab as demonstrated below. The inclusion of this layer is currently under development by the
authors.

The main track slab is identified by its natural frequency. This is defined as the vertical cut-on frequency of
the slab supported on a rigid tunnel via these slab bearings. The natural frequency of each slab [5] can be
calculated from the relationships in Eqs. (14)–(16) for three cases (a), (b), and (c):
(a)
 for two lines of support as in Fig. 6(a):

f n ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
knð2 cos2Oþ 2R sin2OÞ

ms

s
, (14)
(b)
 for three lines of support as in Fig. 6(b):

f n ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
knð2 cos2 cþ 1þ 2R sin2 cÞ

ms

s
, (15)
(c)
 for uniform support as in Fig. 6(c):

f n ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rtkn½fð1þ RÞ þ 0:5ð1� RÞ sin 2f�

ms

s
, (16)

where kn is the slab-bearing normal stiffness, R is the ratio between the shear to the normal stiffness, i.e.
R ¼ ks=kn; ks is the slab-bearing shear stiffness, ms is the slab mass per unit length, rt is the inner radius of
the tunnel, and O, c, and f are the angles of bearings distribution as shown in Fig. 6.
The main track slab is modelled in two ways, either ‘‘direct fastening’’ or ‘‘floating’’. ‘‘Direct fastening’’
(commonly known as ‘‘direct fixation’’) is modelled as case (c) (uniform support) by setting the slab-bearing
stiffness to infinity. ‘‘Floating’’ track is modelled with any of the cases in Fig. 6 according to the distribution of
slab bearings.

The track models are coupled to the tunnel–soil model in the wavenumber–frequency domain. This is done
by considering equilibrium of forces and displacement at the interface between the slab bearings and the
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tunnel wall. This allows for calculation of the velocity and stress FRFs at any given point ðr; yÞ in the soil for a
unit input at the rails in the wavenumber–frequency domain.
5. Power calculation in the soil

The region of most interest for vibration in buildings is that part of the soil above the tunnel, since this is
where foundations of buildings are located. Power radiated downwards is generally of no interest except
perhaps in the case of rigid bedrock, not considered here. Hence, the mean power radiated upwards from the
tunnel (see Fig. 7) is calculated and for the best design of track this value should be minimized. The power
radiated through a circular sector with radius r0 and bounded by the two angles y1 and y2 at an excitation
frequency f̄ ¼ $=ð2pÞ can be calculated from the following expression (see Eq. (11)):

Pðy1; y2Þ ¼
jGj2

2L2

Z y2

y1

X1
k¼�1

Re½ ~V xðxk;okÞ~t�rxðxk;okÞ þ ~V yðxk;okÞ~t�ryðxk;okÞ

þ ~Vrðxk;okÞ~t�rrðxk;okÞ�r0 dy, ð17Þ

where all ~V ðxk;okÞ and ~tðxk;okÞ are functions of y. The three components in this expression take account of
the power contributions from the longitudinal, tangential, and radial stresses, respectively. This equation
provides an effective tool for checking the calculated expressions for stresses and displacements in the soil. The
mean power calculated in this way for all closed boundaries that enclose the tunnel wall are identical, as there
are no internal sources of power in the soil and no losses for the case of zero soil damping. At very low
excitation frequency (near zero frequency), the mean input power at the tunnel wall and hence the mean power
for a boundary enclosing the tunnel approach zero. This is because at such low frequency, the displacement is
in phase with the induced force at the tunnel wall. This in turn makes the mean input power equal to zero. At
higher excitation frequency, power is radiated away from the tunnel with much more radiation downwards
than upwards, because the track is connected to the tunnel at its bottom. This has been investigated by the
authors by producing colour plots of the power radiation around the tunnel for different excitation
frequencies. However, these results are not presented here because this paper is concerned with integrating the
mean power radiating upwards to present a single measure of the vibration rather than investigating vibration
at different points around the tunnel.

The power radiated upwards can be evaluated using a semicircular boundary of radius r0 as shown in Fig. 7.
For the parameters given in Section 6, it is found that the evaluated mean power is effectively invariant for
values of r0X10m (see Fig. 8) because there is no significant change of power flow across the horizontal part
of the boundary. At semicircles near the tunnel wall, i.e. r ¼ 3m, it becomes necessary to account for power
flow through the horizontal part of the boundary.
θ =180

θ =90

Axle mass

θ =270

or

Fig. 7. Mean power flow radiated upward calculated at distance r0 from the tunnel center due to infinite number of axles moving on the

rails. Slab bearings are not shown in the diagram.
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Fig. 8. Distance effect on the mean power flow radiated upward and calculated along semicircles with radii 3mpr0p20m from the tunnel

centre for a directly fixed slab ð1Þ and 20Hz floating slab of uniform support with f ¼ 45�. The results are for train velocity 40 km/h and

a roughness of excitations: (a) 30Hz and (b) 100Hz.

Fig. 9. (a) Tangential FRF velocity ðdBref m=s=NÞ at r ¼ 10m, y ¼ 90�. (b) Radial FRF velocity ðdBre 1m=s=NÞ at r ¼ 10m, y ¼ 180�.

Results are for a unit input at the rail and the track is supported uniformly with f ¼ 45�, f n ¼ 20Hz. (No damping is included.) The four

parallel dotted lines give jvkj in Eq. (17) for excitation frequencies f̄ ¼ 100, 120, 140, and 160Hz.
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6. Effect of track properties on power flow

In this section, the general features of mean power flow from an underground tunnel are investigated.
Hence, the effects of changing parameters such as unsprung mass, bending stiffness of rail and slab, stiffness of
railpads and slab bearings, and the distribution of slab bearings are studied.

Figs. 9(a, b) show the magnitude of the tangential and radial velocity FRFs at y ¼ 90� and 180�,
respectively, at radius r0 ¼ 10m for a 20Hz slab on uniform support. The distinct white curves indicate high
values of the velocity FRF and the two continuous curves are clearly visible. These correspond to the
dispersion curves for a track on a rigid foundation as confirmed later (Fig. 12(b)). The dispersion curve is used
to determine the wavenumber of free wave propagation at a given frequency. It can be seen from the two
dispersion curves that cut-on frequencies occur at 20Hz, where the slab resonates, and at 100Hz, where the
rails resonate.

Fig. 10(a) shows the upwards mean power flow, calculated at r0 ¼ 10m and integrated over a half-circle
from y ¼ 90� to 270�. The four curves are for progressively more resilient slab support, i.e. for1, 40, 20, and
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Fig. 10. (a) Mean power flow radiated upwards, for different slab-bearings stiffness. (b) Effect of doubling the unsprung mass at (a).
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5Hz slabs. The slab is uniformly supported with f ¼ 45� as in Fig. 6(c). The power results in this figure are
calculated at 1Hz frequency intervals (from 1 to 200Hz) by averaging the results within each 1Hz band
(0.5Hz on either side). In each band the results are calculated for every 0.1Hz increment.

Averaging is used to smooth the curves which otherwise fluctuate severely. This is on account of discrete
sampling of the FRFs (see Figs. 4 and 9). Fluctuations are attributed to the high levels of FRFs at points along
the dispersion curves. At a given excitation frequency, some values of V ðxk;okÞ lie on or near the track’s
dispersion curves, which leads to a peak. At another frequency, none of the values of V ðxk;okÞ lie on or near
the track’s dispersion curves, which leads to a trough. Introducing some damping in the track also leads to
curve smoothing. This is because damping attenuates the high levels of FRF at dispersion curves of the track.

In Fig. 10(a), the most distinguishable peaks for all curves occur at 42Hz. This frequency is the wheel–track
resonance frequency in which the wheels and axle resonate on the track. The parameters which control this
peak are described in the next section. Another peak occurs at the cut-on frequency of the slab. For 40Hz
floating slab, this happens to coincide closely with the wheel resonance frequency.

6.1. Model parameters

Parameters used for the train, track, tunnel, and soil [7] are given below. The parameters of the train and
track are typical. The tunnel parameters are those for a concrete tunnel, while the soil parameters are average
values estimated for Oxford Clay. The effects of changing the parameters of the track are discussed in the next
sub-sections.

Train: unsprung axle mass Ma ¼ 1000 kg, velocity v ¼ 40 km=h, axle spacing L ¼ 20m.
Track: rail bending stiffness EIr ¼ 5MPam4, rail mass mr ¼ 50 kg=m, slab bending stiffness EIs ¼ 1430MPam4,

slab mass ms ¼ 3500 kg=m, railpad stiffness kr ¼ 20MN=m2, railpad loss factor Zkr0 ¼ 0:3, slab-bearing loss factor
Zks ¼ 0:5, slab-bearing shear to normal stiffness ratio R ¼ 1 for direct fixation, i.e. 1 Hz and 0.5 for other slabs
(i.e. 40, 20, and 5Hz).

Tunnel: mean radius ra ¼ 3:0m, thickness h ¼ 0:25m, modulus of elasticity Et ¼ 50GPa, Poisson’s ratio ut ¼

0:3, density rt ¼ 2500 kg=m3, and no damping.
Soil: compression wave speed c1 ¼ 944m=s, shear wave speed c2 ¼ 309m=s, Poisson’s ratio us ¼ 0:44, and

no damping.

6.2. Effect of unsprung mass on power flow (wheel– track resonance)

The wheel–track system at resonance can be described as a single-degree-of-freedom system with a mass
equal to the unsprung mass of the train plus that part of the rail which moves up and down with the wheel and
a stiffness equal to the track stiffness underneath the wheels. A closed-form equation for calculating the
resonance frequency is derived from the resonance of a mass coupled to a beam on a Winkler foundation and
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can be written as

ðmbo2 � kf Þ
3
þ

M4
a

64EIb

o8 ¼ 0, (18)

where mb is the beam mass per unit length, EIb is the beam bending stiffness, kf is the foundation stiffness, and
Ma is the coupled mass. One can prove Eq. (18), using the response of a beam on an elastic foundation under a
unit concentrated harmonic load with angular frequency $ applied at x ¼ 0 and given by Eq. (19), see Ref. [7]
for example:

ybðx; tÞ ¼
1

4a3EIb

ðeajxj þ ieiajxjÞei$t with a4 ¼
mb$

2 � kf

EIb

. (19)

The value of a in Eq. (19) should be chosen to be with a negative real value if a4 is positive, while it should be
chosen in the third quadrant if a4 is negative. If a mass Ma is coupled to the beam at x ¼ 0 and excited by a
unit harmonic load with angular frequency $, the mass displacement is described by

yMa
ðtÞ ¼

1

1=ybð0; 0Þ �Ma$2
ei$t. (20)

From Eq. (20), a resonance occurs when 1=ybð0; 0Þ �Ma$
2, substituting for ybð0; 0Þ from Eq. (19) and

simplifying results in Eq. (18).
Using the rail parameters from Section 6.1, the wheel–track resonance is found to be 42Hz, which matches

with the results in Fig. 10(a). Doubling the unsprung mass to Ma ¼ 2000 kg leads to the results in Fig. 10(b).
Using Eq. (18) leads to wheel–track resonance equal to 31Hz, which matches the results in Fig. 10(b).
6.3. Effect of slab bearings on power flow

Slab bearings isolate the track from the tunnel-transforming part of the wheel input into slab vibration and
thus decreasing forces at the tunnel wall. For slabs with low natural frequencies as calculated by Eqs.
(14)–(16), slab bearings decouple the track from the tunnel. This enables the soil FRFs to be calculated in a
different way. Firstly, forces on the tunnel wall are calculated assuming a rigid tunnel. These forces are then
used as input to the tunnel–soil model to calculate the soil FRFs. Fig. 12(a) shows the dispersion curves for a
track on rigid foundation with infinite stiffness slab bearings. Only one mode can propagate along rails with a
cut-on frequency at 100Hz. Introducing slab bearings (20Hz natural frequency of slab) leads to another
mode. Crossover of modes occurs between 100 and 120Hz. This can be seen by comparing Figs. 12(a) and (b).
Such a phenomenon occurs in other waveguide solutions, see Ref. [9] for example.
6.4. Effect of railpads stiffness on power flow

Fig. 11 shows the effect of changing the railpad stiffness from 20 to 2MN=m2. The mean power insertion
gain (PFIG) [10] is used and defined as

PFIG ¼ 10 log10
Pafter

Pbefore

� �
, (21)

where Pbefore and Pafter are the mean power radiated upwards before and after changing some of the track
properties, respectively. In Fig. 11, Pbefore is calculated for four tracks with the same railpad stiffness
ð20MN=m2Þ, but with different slab bearings stiffness. Pafter is calculated for the same four tracks with
different stiffness of the railpads ð2MN=m2Þ. It can be seen that changing the stiffness of railpad leads to a
change in the wheel–track resonance frequency (from 42 to 24Hz) and decreases the power radiation at high
frequencies (above 70Hz) by an average of 8 dB.
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Fig. 11. Insertion gain due to changing the railpad stiffness from 20 to 2MN=m2.
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6.5. Effect of bending stiffness of rail and slab on power flow

According to Eq. (18), changing the bending stiffness of the rail affects the wheel–track resonance frequency
because it changes the track stiffness under the wheel. Comparing Figs. 12(b) and (c) reveals that another
effect of decreasing the rail bending stiffness is the broadening of the rail dispersion curve. The same effect can
be seen for the slab dispersion curve by changing the slab bending stiffness (compare Fig. 12(d) with (b)).
Investigation of the coupled tunnel–soil model shows that it strongly attenuates vibration at large
wavenumbers. This means vibration can be attenuated by broadening the track dispersion curves, so that
they occur at high wavenumbers and thus are attenuated by the tunnel–soil model. Figs. 13(a) and (b) show
the PFIG by decreasing the bending stiffness of the rail and the slab, respectively, to one-tenth of their original
values.
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M.F.M. Hussein, H.E.M. Hunt / Journal of Sound and Vibration 293 (2006) 667–679678
6.6. Effect of distribution of slab bearings on power flow

Figs. 13(c) and (d) show examples of controlling the power radiated upwards. Changing the distribution of
the slab-bearings controls the azimuthal distribution of the load on the tunnel. In these cases, the mean power
flow is increased up to 14 dB by supporting the slab via three lines and two lines with respect to the uniform
support. This is because the tunnel is less constrained by using a discrete track support compared to the
uniform track support, leading to more vibration. An important conclusion is drawn from Figs. 13(c) and (d)
that the details of the track support (the distribution of slab bearings) have a significant effect on the power
flow and consequently on the vibration propagating from underground railways. Therefore, more attention
should be paid in modelling to the support distribution, especially for prediction models [11] of vibration from
underground railways.
7. Conclusions

A new method based on power flow calculations is presented to evaluate the performance of vibration
countermeasures for underground tunnels. An expression of the power radiation is derived for an infinite train
moving through the tunnel. A three-dimensional model of a track coupled to a tunnel in the ground is used to
investigate the upward mean power from the tunnel. The track properties along with the tunnel–soil–track
interaction play important roles in controlling the radiated power. The method is used to investigate the effect
of unsprung mass, railpads, slab bearings, railpads, and bending stiffness of rail and slab.
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